Dr. Arthur Wade, 1924
Basic Premise of This Paper
The premise of this posting is that Dr. Arthur Wade made a significant contribution to the discovery of Prccambrian fossils in Australia and that his contribution has been overlooked by many currently working on Ediacaran fossils. The following points are worth noting.
- Dr. Arthur Wade (1924) considered the structures that he figured in his Plates VII, VIII, VIII, X to be fossils from the “Lower Cambrian (Proterozoic?) Flags.” At least two of those photographs are of Precambrian fossils: Protoniobia and Horodyskia.
- Protoniobia is considered a Proterozoic fossil. Accordingly, Dr. Arthur Wade was the first to publish photographs of Australian Proterozoic fossils. Dr. Arthur Wade did this in 1924, over two decades before Sprigg’s (1947) publication ‘Early Cambrian Jellyfish from the Flinders Range’ and Sprigg’s (1950) publication ‘Early Cambrian 'Jellyfishes' of Ediacara South Australia and Mount John, Kimberley District, Western Australia.’
- Dr. Arthur Wade was the first person in Australia to use Precambrian fossils as an aid in mapping.
- While Dr. Arthur Wade tentatively assigned his fossils to the Lower Cambrian he commented a number of times that they might be Proterozoic. In an article written in 1928 Sir T. W. Edgeworth David recognized and publicized that Dr. Arthur Wade had found Proterozoic fossils. Sir T. W. Edgeworth David’s (1928) publication is referenced in Sprigg (1947) and, for example, Glaessner (1959) and Wilson (1957).
- One of the fossils that had been shown in a plate in Dr. Wade’s publication was figured in Sprigg’s (1950) publication and named Protoniobia wadea, Sprigg. The Holotype was collected by Dr. Arthur Wade.
- Another of Dr. Arthur Wade’s (1924) fossils was likely the first photograph of Horodyskia, a Precambrian fossil found in rocks dating from the Mesoproterozoic (possibly to the Ediacaran). The literature reports that the structures were first described by Horodyski (1982) from the Mesoproterozoic Belt Supergroup, Montana, who thought them likely nonbiogenic, possibly representing a repetitive tool mark, but possibly biogenic. They was subsequently reported in Western Australia by Grey and Williams (1990). They were named Horodyskia moniliformis by Yochelson and Fedonkin ( 2000). Dr. Wade (1924) should be credited as the first to report the fossil as his photographs appeared fifty-eight years prior to Horodyski (1982).
- Most writers, including Sprigg (1950), incorrectly assigned Dr. Wade’s specimen of Protoniobia to the Cambrian. A few now assign it to the Ediacaran. Glaessner and Walter (1981) assigned it to rocks much older than the Ediacaran.
- Dr. Arthur Wade or F. Chapman ( 1925), describe Dr. Wade’s fossil that Sprigg later named Protoniobia wadea as “A probable impress of a coiled (?) gephyrean or unsegmented worm”. Sprigg (1950) believed it to be “the impression of a medusa”. Harrington & Moore (1956) rejected both interpretations: "Here interpreted as a concretion, inorganic." Öpik (1957a) and Noakes (1957) both considered it a jellyfish, relying on Sprigg. Williams (1967) commented that the organic origin of the jellyfish discovered by Wade (1924) and named by Sprigg (1949) “is doubtful (Dow & Gemuts, in prep.).” Cloud (1968) thought it inorganic. Dow and Gemuts (1969) commented “there is some doubt that Wade's jellyfish is of organic origin.” Glaessner and Walter (1981, page 388) commented that it was “an abiogenic concretion”. Strusz (1992), interpreted it as “a concretion, inorganic.” Hoffman (1992) included it in his list of megascopic dubiofossils and pseudofossils. McCall (2006) stated that it was “clearly a body fossil and resembles Ediacaran medusoids.” Fedonkin et al. (2007) suggested it was “Possibly a cnidarian.” Lan and Chen (2012) commented “These fossils are also highly questionable.” Menon (2015) characterized it as one of many “Probable junior synonyms of Cyclomedusa davidi Sprigg 1947,” and interpreted it as the “Possible upper surface of holdfast”. The characterization of the specimen by Dr. Arthur Wade as a ‘fossil’ and by Dr. Arthur Wade or F. Chapman (1925) as “A probable impress of a coiled (?) gephyrean or unsegmented worm” is arguably as accurate as those assigned to the specimen by others.[Added November 6, 2021:] In a paper submitted and accepted for
publication in August -September, 2020 Bicknell, Smith, Schroeder,
Kimmig (2020) suggest that “serious doubts have been raised regarding
biological affinities” of Protoniobia wadea Sprigg, 1949, referencing
Dunnet 1965, Cloud 1968, Dow & Gemuts 1969, Grey 1981a, 1981b, Lan
& Chen 2012, noting that “Most authors consider P. wadea to
represent a chert plate;”.
Background - Sir T. W. Edgeworth David’s 1928 Paper
When I read a new article I also read the list of references looking for articles of historical interest. In my March 30th posting I mentioned an article by Dr. Alice E. Wilson describing the packing and storage of the Geological Survey of Canada’s Aspidella specimens. Dr. Wilson referenced an interesting article by Sir T. W. Edgeworth David (1928), an Australian geologist and Antarctic explorer, in which he summarized articles on Precambrian fossils, and mentioned:
“Dr. Arthur Wade records the occurrence of markings with tracks and trails apparently of organic origin in the Lower Cambrian or Proterozoic rocks (probably the latter. — T. W. E. D.) of (1 ) Mount John, in the Kimberley region of Western Australia ; (2) in the Victoria River area of North Australia ; (3) at Elcho Island and in the Cape Wilberforce district, on the north-west side of the Gulf of Carpentaria. Speaking of these Wade says : "Our most interesting find consisted of a variety of fossil remains in these (Mount John.— T. W. E. D.) siliceous flags and shales. These consisted of the tracks of forms of life unknown to us — Worm tracks, long stem-like structures sometimes in great profusion, and other more complex and more obscure forms." Wade found these markings of value for purposes of correlation.”
Dr. Arthur Wade’s 1924 Publication
That remark by Sir Edgeworth David, in an article published in 1928, that in Proterozoic rocks of Australia Dr. Arthur Wade had found “Worm tracks, long stem-like structures sometimes in great profusion, and other more complex and more obscure forms” piqued my interest and after failing to find an online version of Dr. Arthur Wade’s publication, and failing to locate the publication at a local library, I ordered a copy. I have now received and read Dr. Arthur Wade’s report, which has the title “Petroleum prospects, Kimberley district of Western Australia and Northern Territory ” (not the title that one would expect from the extract provided by Edgeworth David). The plates in the publication are worth the cost of the publication, as at least two of the fossils that Dr. Wade identifies as “fossils” from the “Lower Cambrian (Proterozoic?)” would now be identified as the Precambrian fossils Protoniobia and Horodyskia.
By way of background, it is worth noting that Dr. Arthur Wade was a petroleum geologist (see Vallance, 1990) and that his 1924 publication involved mapping the Kimberley District of Western Australia and the Northern Territory in a search for oil. As part of that project he mapped the Precambrian, Cambrian and other Phanerozoic rocks of the Kimberley District, and reported finding a Lower Cambrian series of sedimentary rocks (quartzites, sandstones, conglomerates, shales and flags) “that may well pass downward into the Pre-Cambrian”, a point that he emphasized a number of times in the publication. For example, in his chart of the formations and thickness, Dr. Wade gives the age (at page 10) as “Lower (may pass down into Proterozoic or Precambrian)” for his Albert River Series which includes “Gray and green silicious shales, flags and flaggy grits of Mt. John (W.A.), also of Victoria River, Elcho Island, Cape Wilberforce, and the Rover River (N.T.)... 500 feet.” . When describing the Fitzroy Area Dr. Wade mentions (at page 14) “We have, therefore, called them the Lower Cambrian series, though they may pass downward into the Pre-Cambrian. When describing the Ord River Areas Dr. Wade mentions (at page 25) “The beds are part of what we have called the Lower Cambrian sedimentary series, and may be older. ... This wall is the scarp face of the basal beds of the Cambrian, or, may be, Proterozoic series, and can be traced...” . When describing his Geologic Map, Dr. Wade commented (at page 39) “Again we feel certain that the beds mapped and described as lower Cambrian go down to and include Pre-Cambrian sediments with apparent conformity, and these have all been shown under one colour.”
Here is a longer version of the part quoted by Sir Edgeworth David, and is Dr. Arthur Wade’s description of the Mt. John area (page 30):
“ The Lower Cambrian (or, may be, Proterozoic) series has a far greater extension to the W. at this point than is shown on any of the maps... Our most interesting find consisted of a variety of fossil remains in these siliceous flags and shales. These consisted of the tracks of forms of life unknown to us — Worm tracks, long stem-like structures sometimes in great profusion, and other more complex and more obscure forms. These very ancient life forms proved to be very valuable find so far as we were concerned, since we found identical forms in similar beds later in the Victoria River area just over the border in Western Australia and in the Northern Territory, and as far as Elcho Island and the Cape Wilberforc district on the W. Side of the Gulf of Carpentaria, thus enabling us to correlate the strata..”
At least two of “the ancient life forms” that Dr. Arthur Wade relied on that are shown in Dr. Arthur Wade’s plates would now be recognized as Proterozoic fossils, and I find it interesting that Dr. Arthur Wade in Australia, like Alexander Murray in Newfoundland (who used the Huronian fossil Aspidella as an aid in mapping), was able to use Precambrian fossils as an aid in mapping.
Dr. Arthur Wade’s Plates
Dr. Arthur Wade includes six plates of which he identified as fossils from the Lower Cambrian:
- Plates VII, VIII, IX and X – “Lower Cambrian Fossils (undetermined) . Lower Cambrian (Proterozoic?) Flags, Mt. John, Osmond Range, Western Australia” ,
- Plate XI with “Lower Cambrian Fossils (undetermined) Auvergne Station, N.T.” and
- Plate XII “Lower Cambrian Fossils (undetermined). In Lower Cambrian Quartzite, Elcho Island, N.T.”
Dr. Arthur Wade’s Plate IX
The fossil in Dr. Arthur Wade’s Plate IX is the one of most interest. It is reproduced below.
When looking at the photograph it is important to note that Dr. Wade (1924) states that the photograph shows the specimen in its natural size. The large disc (as measured on the photo in Dr. Wade’s publication) has a diameter of 6 cm ( 2 1/4 inches), not the 4.1 mm that is reported in a number of publications (Sprigg (1950); McCall (2006), Fedonkin et al. (2007)). [Inserted July 25, 2019:] Natalie Schroeder, the Collection Manager for the Commonwealth Palaeontological Collection, at Geoscience Australia has told me "the specimen measures 41 mm in diameter, not 4.1 mm!”
A separate publication (herein, Chapman, 1925), describes the plates and other specimens collected by Dr. Arthur Wade and describes the fossil in Plate IX as “A probable impress of a coiled (?) gephyrean or unsegmented worm, lying on the bedded surface of a laminated sandstone. Lower Cambrian Flags. Mount John, Osmond Range, Western Australia.” The photographed specimen bears Dr. Wade’s specimen Number 275. That separate publication is in two parts: first, a description of the plates where the author is not identified; second, a preliminary description of all of Dr. Wade’s specimens where the author is identified as M r. F. Chapman, Palaeontologist, National Museum, Melbourne. It is not clear whether Dr. Wade was the author of the description of the plates, or whether Chapman authored both parts.
Sprigg’s (1950) Description of Dr. Arthur Wade’s Specimen - Plate IX
Sprigg (1950) in his paper ‘Early Cambrian 'Jellyfishes' of Ediacara South Australia and Mount John, Kimberley District, Western Australia’, describes Dr. Wade’s specimen at pages 77-79 of his article (including it within the Hydrozoa and placing it in the Lower Cambrian) and figured Dr. Wade’s specimen as his Figure 1, Plate IX, with the caption: “Fig. 1 Protoniobia wadea, Sprigg. Holotype No. 192, Commonwealth Palaeontological Collection, Canberra, F.C.T. Specimen collected by Dr. A. L. Wade from Lower Cambrian flags, Mount John Osmond Range, Western Australia. The impression occurs on the bedded surface of laminated sandstone.”
Sprigg (1950) provides the following measurements: “Dimension — Maximum diameter of the bell 4.1 mm.; average diameter of (?) gonadial nodes 2.5 mm.; maximum diameter of largest "bud" 1.4 mm.” As noted above, Sprigg’s measurements do not agree with Dr. Wade’s photograph of the specimen that is supposed to be of natural size. The most likely explanation is typographical error: Sprigg’s dimensions should be in centimeters not millimeters. [Inserted July 25, 2019:] Natalie Schroeder, the Collection Manager for the Commonwealth Palaeontological Collection, at Geoscience Australia has told me “you are absolutely right ... – the specimen measures 41 mm in diameter, not 4.1 mm!”
Sprigg (1950) concluded that “The specimen is the impression of a medusa.”
Nearby Locations - Similar Fossils
Others have searched for specimens of Dr. Arthur Wade’s ‘jellyfish’ with mixed results. While Noakes (1957) commented “at Mt. John, Wade (1924) discovered fossils which were eventually established as fossil jellyfish by Sprigg in 1949. Again, search over many years has produced no other fossils in these rocks” , Traves (1957) commented on Upper Proterozoic rocks in the Kimberley plateau noting that “Along the banks of the Ord River near Carlton Crossing stromatolitic structures and possible jelly-fish marks were examined by Dr. Öpik and the writer. A number of undetermined fossils of a similar nature are illustrated in Wade's report (1924) as occurring at Mt. John, Osmond Range, W. A.”
Dow and Gemuts (1969) reported finding specimens similar to Dr. Wade’s at a nearby location, commenting (1969, at pages 79-80) “It was from the lower unit that Wade (1924) collected the supposed jellyfish named by Sprigg (1949) Protoniobia wadea. Wade thought the sandstone was Lower Cambrian, and Sprigg correlated the beds with the basal Cambrian of Ediacara in South Australia, but they are of course much older. We could not find Wade's locality, but in Wade Creek there is a platform on which are exposed hundreds of small chert plates consisting of a number of concentric rings, very similar to Wade's supposed jellyfish. Many of these are single plates, between half an inch and 2 inches across, but a large proportion consists of two to three individuals of various sizes fused together. In some cases, small nodules are fused to the margin of a larger one, giving the appearance of the budding appendages described by Sprigg. Under these circumstances there is some doubt that Wade's jellyfish is of organic origin, a doubt previously expressed by Harrington & Moore (Moore, 1956).”
Mount Brooking is 80 miles north of Mount John. Dunnet (1965) reported on an occurrence of Proterozoic "jellyfish" from Mount Brooking, Kimberley Region, Western Australia, but commented “They bear no resemblance to the Forms found by Wade (1924) and described by Sprigg (1949) from rocks lower in the sequence near Mount John 80 miles SSW of Mount Brooking.” Grey (1981a,b) examined additional specimens of “ ‘jellyfish’ or ‘medusoids’ ” from the Mount Brooking area, concluding that they were inorganic.
Age of the Mount John Shale Member and the Wade Creek Sandstone
There is a bit of uncertainty as to the age of the rocks where Dr. Arthur Wade collected the specimen now known as Protoniobia, if like me you want to believe that Protoniobia is Ediacaran. Since 1967 most writers assign the rocks to the Mesoproterozoic.
Dr. Arthur Wade stated that the specimen in Plate IX was found in the flags at Mt. John, Osmond Range, Western Australia. Sprigg (1950) stated that “The impression occurs on the bedded surface of laminated sandstone.” Dow and Gemuts (1969) stated that Wade’s specimen “was from the lower part of the Wade Creek Sandstone.” Glaessner and Walter (1981) commented that Protoniobia wadea Sprigg was “from the Mount John Shale Member of the Wade Sandstone.” As the Mount John Shale Member is part of the Wade Creek Formation, the age of either one is the age of Dr. Wade’s specimen.
Consider the following.
- Dr. Arthur Wade assigned it to the Lower Cambrian, possibly the Proterozoic.
- Sprigg (1950) assigned it to the Lower Cambrian. Sprigg (1950) reported that a second example of Protoniobia has been discovered amongst material from Ediacara, South Australia, that the fossil was slightly smaller, with evidence of four daughter buds, and that “Its discovery supports the view that the Kimberley fossil was approximately contemporaneous with the Ediacara suite.” Seven years later Glaessner and Daily (1957) comment that the small specimen “is not a Protoniobia but represents the new form described below as Tribrachidium heraldicum.”
- Öpik (1957a, 1957b) assigned the beds to the "Eocambrian." (Wikipedia: Eocambrian ... referring to the latest (youngest) portion of time in the Precambrian Eon or to the uppermost Precambrian sediments which were continuously deposited across the Precambrian-Cambrian time boundary.)
- Vivian Bofinger (1967) submitted a doctoral thesis entitled Geochronology in the East Kimberley Area of Western Australia in which she determined the age of the Mt. John Shale Member of the Wade Creek Sandstone. She reported that the results of the Rb-Sr isotope dilution analyses gave an indicated age of 1128 + 110 m.y.
- Dow and Gemuts (1969) mapped the Kimberley Region of Western Australia and designated one unit the Wade Creek Sandstone, with the contained Mount John Shale Member. They commented that “It was from the lower part of the Wade Creek Sandstone that Wade (1924) found an impression thought to be fossil jellyfish, which was named Protoniobia wadea by Sprigg (1949).” They also noted that the “Mount John Shale has been isotopically dated by the Rb/Sr method as 1,128 ± 110 m.y.”
- Glaessner and Walter (1981, page 388) commented that “The supposed medusoid Protoniobia wadea Sprigg is an abiogenic concretion from the Mount John Shale Member of the Wade Sandstone of northwestern Australia which is 1125 +- 110 Ma old (Plumb and Derrick, 1975). ”
- McCall (2006) commented that Protoniobia wadea “is clearly a body fossil and resembles Ediacaran medusoids. The Kimberleys is a vast region and exposes great expanse of Proterozoic to lower Palaeozoic rocks. . .. Although Sprigg recorded this occurrence as Cambrian, the age of the Mount John Shale Member as given by Grey and Griffin (1990) is 1128 Ma (±110 Ma) citing Dow and Gemuts (1969). This would not equate with the age of the Pound Quartzite of the Ediacara type area, being much older than the Vendian. However, age dating evidence in the Kimberleys is somewhat meager.”
- Lan and Chen (2010) comment that “the Mount John Shale Member is stratigraphically below the Eliot Range Dolomite which was assigned to the early to middle Neoproterozoic in age by stromatolite biostratigraphic correlation (Grey and Blake, 1999). The Mount John Shale Member therefore is not younger than early Neoproterozoic in age.”
- Grey and Blake (1999) include a stratigraphic column where they assign the Wade Creek Formation and the Mount John Shale to the Mesoproterozoic with an age of about 1200 Ma. They note that “The Bungle Bungle Dolomite is overlain unconformably by the Wade Creek Sandstone,which is separated from the overlying Duerdin Group by the Ahern Formation and the Helicopter Siltstone (Tyler et al. 1997).
- Both Tyler et al. (1997), a 1:100 000 geological map (sheet 4563) , and Tyler et al. (1998), 1:250000 geological map (sheet SE 52-6), include stratigraphic columns which include the rocks at Mount John and the Osmond Range. They place the Wade Creek Formation and the Mount John Shale in the Proterozoic below the Ahern Formation and the Helicopter Siltstone to which they assign an (uncertain) age of “c.?800Ma.” They do not assign an age to the underlying Wade Creek Formation and the Mount John Shale.
- Tyler, Hocking and Haines ( 2012) state that “The Glidden Group and Wade Creek Sandstone have been correlated with the Carr Boyd Group (Tyler, 2000; Blake et al., 2000).” and that “Deposition of the Carr Boyd Group probably took place in a deltaic to shallow-marine setting at c. 1200 Ma, the age of intrusion of the Argyle lamproite diatreme into wet sediments (Thorne and Tyler, 1996; Jaques et al., 1986; Pidgeon et al., 1989).”
- The Australian Government’s online ‘Australian Stratigraphic Units Database’ gives the formation a “Maximum age: Mesoproterozoic, Ma: 1128 +/- 110".
It is not clear to me that Bofinger’s (1967) analysis of the Mt. John Shale Member of the Wade Creek Sandstone would have given the age of the shale or the age of the source for the sediment in the shale. However, Nebel (2014) commented that “The Rb–Sr dating technique is among the most widely used and most powerful dating tools available in Earth sciences. It is an effective means of dating igneous rocks or metamorphic events and, under special circumstances, can be applied to sedimentary sequences, ...”
Dr. Arthur Wade’s Plate X - Horodyskia
Below I have reproduced Dr. Arthur Wade’s Plate X
Dr. Arthur Wade (1924) identified it as a fossil with the following description of the plate: “Plates VII, VIII, IX and X – “Lower Cambrian Fossils (undetermined) . Lower Cambrian (Proterozoic?) Flags, Mt. John, Osmond Range, Western Australia. VII, IX and X, nat. size; VIII, 1/2 size.”
Here is the description of Plate X from the first part of the separate publication (Fletcher, 1925): “Plate X. A fine-grained shore-line sandstone, showing probable tracks of a (?) crustacean. Lower Cambrian Flags. Mount John, Osmond Range, Western Australia.”
The specimen shows two diverging lines of small circles that look like isolated strings of beads.
An identical, or nearly identical structure, from Precambrian rocks has been identified as the fossil Horodyskia. The literature on Horodyskia invariably reports that the structures were first described from the Mesoproterozoic Belt Supergroup, Montana, by Horodyski (1982) who thought them likely nonbiogenic, possibly representing a repetitive tool mark, but possibly biogenic. They was subsequently reported in Western Australia by Grey and Williams (1990). They were named Horodyskia moniliformis by Yochelson and Fedonkin ( 2000).
The fossil shown in Dr. Arthur Wade’s Plate X is essentially the same as the fossil shown in Fedonkin’s (2003) Figures 1 [Middle Proterozoic, Montana] and 2 [Middle Proterozoic, Western Australia] . The specimen featured in Dr. Arthur Wade’s Plate X is also nearly identical to structures on the slabs from Western Australia featured in Figures 2 and 5 of Grey and Williams (1990). Grey and Williams (1990) do not cite Dr. Arthur Wade’s publication, but Grey et al. (2009) do, commenting “Structures from the late Precambrian or early Cambrian near Mount John, east Kimberly region, appear similar to Horodyskia and require further investigation (Wade, 1924, p. 47, Plate X).”
It is important to note that Dr. Arthur Wade (1924) identified Plate X as a fossil and that it was described in Fletcher (1925). If Dr. Arthur Wade’s Plate X is Horodyskia, then he ought to be credited as the first to figure and describe the fossil.
Horodyskia has also been reported from Ediacaran age rocks (e.g., Dong et al. (2008) reported Horodyskia from the Ediacaran rocks in South China.) . However, in Calvera et al.’s (2010) report of Horodyskia in the mid-Proterozoic of Tasmania they question the Ediacaran finds commenting that they discount “ the Ediacaran occurrences of Mathur and Srivastava (2004), Shen et al. (2007) and Dong et al. (2008),whose assignation to Horodyskia we find doubtful.” If Horodyskia is found in rocks dating from the Mesoproterozoic to the Ediacaran it has a 800 Ma range.
If Horodyskia is found only in rocks dating from the Mesoproterozoic, then this agrees with the age 1128 + 110 m.y. that Dr. Vivian Bofinger (1967) assigned to the Mt. John Shale Member of the Wade Creek Sandstone.
Dr. Arthur Wade’s Plates VII, VIII and XI
Below I have reproduced Dr. Arthur Wade’s Plates VII, VIII and XI with their descriptions in the first part of the separate publication.
Plate VII. Curious surface markings, usually ascribed to trails of seaweed, and tracks of crustacea. The straight linear bodies may indicate sponge remains—a strange association. Lower Cambrian Flags. Mount John, Osmond Range, Western Australia.
Plate VIII. A slab of shore-line sediment, similar to the preceding: with probable crustacean tracks and long (?) spicular bodies. Lower Cambrian Flags. Mount John, Osmond Range, Western Australia
Plate XI. Problematic fossils, including tracks and trails. Also thick spicular-like bodies of doubtful origin. Auvergna Station, Northern Territory. Lower Cambrian Flags.
The specimen shown in Plate VII bears Dr. Wade’s specimen Number 267. Later in the separate publication Chapman added the note “267 . . (?) Trail of a seaweed and tracks of a (?) crustacean. Also tracks of Protichnites sp. Also remains of crustaceans (?) (phyllocarids).” . [Added November 5, 2021:] A recent paper by Bicknell, Smith, Schroeder, Kimmig (2020) deals with Chapman’s (1925) comment on Wade’s specimen 267, shown in his plate VII and Chapman’s comment that the specimen shows the “remains of crustaceans (?) (phyllocarids).” Bicknell et al. generously comment that “there is a small degree of morphological similarity between [an 8mm x 6 mm structure on Wade’s specimen 267] and the possible phyllocarid resting trace” but conclude “the specimen’s prior identification as a ‘phyllocarid’ and its similarity to a body fossil is simply a case of pareidolia..” They reach that conclusion in part because they assign the rocks to the Mesoproterozoic, well before the accepted age for the origin of Euarthropoda. They conclude “the ‘phyllocarid’ likely represents scoring or scouring of the bedding surface.”
The specimen shown in Plate VIII bears Dr. Wade’s specimen Number 266. Later in the separate publication Chapman added the note “266 . . A large slab, circ . 32 x 28 cm. of a fine sandy shoreline sediment (finely stratified), with numerous casts (negative) of linear tracks, presumably of crustaceous origin.”
It is not clear to me how to classify all of the features shown in Dr. Wade’s three Plates VII, VIII, and XI . Öpik (1957b) suggested ice-crystal casts. Sweet (1977) suggested skip and prod casts caused by current scour. A few of the textures look like discoidal bumps and pits that have been classed as biogenetic on some Ediacaran slabs (e.g., Beltanelliformis m. and b.), some of the linear features resemble microbially induced sedimentary structures, and some features (particularly on Plate VII) resemble various Edicaran tube fossils or odd Ediacaran fossils that are a series of rods or lobes.
Öpik (1957b) commented that he had “observed ice-crystal casts in the sediments of the Upper (or Middle?) Precambrian Warramunga Group at the Skipper Extended Mine at Tennant Creek, and Wade (1924, pl VII, VIII, and XI) illustrated similar forms as Lower Cambrian fossils (undetermined) from Mt. John, Osmond Range, Western Australia.” While at least one other person has written about and figured supposed fossil ice crystal casts (Udden, 1918), Öpik’s suggestion of “ice-crystal casts” doesn’t appear apt, particularly for Plates VII and XI.
Sweet (1977) commented that Wade’s (1924) “supposed trace fossils ... have not been proved to be organic markings” and that he had observed similar markings in much older rocks which “are best described as skip and prod casts because they are preserved in coarse siltstone and fine sandstone beds overlying the fine siltstone or shale beds. It is probable that they were caused by current scour of mud laminae.” Sweet’s figured specimen looks like features in Wade’s plates VII, VIII, and XI. Further, Wade’s plates VII, VIII, and XI show features that are similar to turbidite skip and prod casts in Plate II in Spotts And Weber (1964 ).
Would all of the structures on Plates VII, VIII, and XI be classed as skip and prod casts, or are some microbially induced sedimentary structures or biogenic fossils? Dr. Arthur Wade’s specimens would be worth a closer look by a Paleontologist.
Dr. Arthur Wade’s Plate XII
Chapman (1925): Plate XII. Lower Cambrian Quartzite (current-bedded). Probably of shallow water origin. With deep imprints, probably made by grovelling crustacea (trilobites). Elcho Island, Northern Territory.
[Both Cloud (1959, page 940) and Fortey (2010) describe ‘grovelling’ trilobites.] This specimen looks Cambrian (possibly Scolithos?).
A List of Dr. Wade’s Specimens
Chapman (1925) provides a Preliminary Report on the over three hundred numbered specimens collected by Dr. Arthur Wade, including fifteen that are identified as “Lower Cambrian or even Algonkian”. The specimens numbered 266, 267, 275 and 337 are shown in Plates VIII, VII, IX and XII. It is not clear which specimens are shown in Plate X (Mt. John) and XI (Auvergne Station) .
I believe that all of the following specimens merit re-examination. Below I provide Chapman's (1925) description.
Nos. in Wade
Collection.
Locality . — Flora Valley .
Age.— Lower Cambrian or even Algonkian.
247 . . Missing .
248 . . Trail of polychaete .
Locality . — Osmond Range, Mount John, Kimberley .
Age.— Palaeozoic . Lower Cambrian or even Algonkian.
266 . . A large slab , circ. 32 x 28 cm . of a fine sandy shoreline sediment (finely stratified) , with numerous casts (negative) of linear tracks, presumably of crustaceous origin .
267 . . (?) Trail of a seaweed and tracks of a (?) crustacean. Also tracks of Protichnites sp. Also remains of crustaceans (?) (phyllocarids).
268 . . (? ) Trail of seaweed .
269 . . Tracks of organic origin and a vermiform impression .
270 . . (? ) Tracks of crustacean.
271 . . (? ) Tracks and castings.
272 . . Spine of a (? ) crustacean and tracks of crustacea or vermes.
273 . . Ripples marks in cross bedded sandstone .
274 . . Fine grained sandstone with remains of (?) hymenocarid forms and (?) tracks. Pittings of latter in relief are monticules (negative) with radiating surfaces.
275 . . A cast of the body of a coiled worm, (?) gephyrean, in laminated sandstone ,and lying on the bedded surface.
Locality.— Point Bristow, Elcho Island, Northern Territory.
Age .—Lower Cambrian or even Algonkian..
324 . . Fine laminated sandstone with (?) crustacean tracks.
325 . . Fine laminated ferruginous sandstone with (?) crustacean tracks.
Locality.— Cape Wilberforce, Elcho Island.
Ag e .— Lower Cambrian or even Algonkian.
330 . . Trails and tracks, (?) crustacean.
Locality.—South of Point Bristow and along coast of Elcho Island.
Age.— Lower Cambrian or even Algonkian.
337 . . Sandstone block with deep imprints, probably made by grovelling trilobites.
Those specimens would be worth examining.
References to Dr. Arthur Wade’s Specimens and to his Work in the Kimberley Region
Below I’ve provided a list of references plus extracts from the papers where Dr. Arthur Wade’s specimens are referred to. Dr. Arthur Wade’s paper on the Kimberley Region is cited in many scientific papers dealing with the formations and their structure. I have only included the ones directly related to his Precambrian ( Ediacaran?) fossils.
All recent papers that I have read that describe the discovery and promotion of the finding of Ediacaran fossils in Australia highlight the work of Reginald Sprigg, Mary Wade and Martin F. Glaessner and their colleagues, and overlook the work of Dr. Arthur Wade. I hope that this posting will bring Dr. Arthur Wade’s contributions to the attention of others.
I had been tempted to title this posting ‘Should Dr. Arthur Wade get equal Billings for the discovery of Precambrian fossils in Australia’, but thought better of it.
Christopher Brett
Ottawa, Ontario
Addendum ( July 25, 2019): On July 24th I sent an email to the general enquiries email address for Geoscience Australia asking about the measurements of CPC 192, the specimen collected by Dr. Arthur Wade and named by Sprigg (1950) as Protoniobia wadea, Sprigg. On July 25th I received an email back from Natalie Schroeder, the Collection Manager for the Commonwealth Palaeontological Collection, at Geoscience Australia. She told me “you are absolutely right, Reg Sprigg got his units of measurement wrong for CPC192 – the specimen measures 41 mm in diameter, not 4.1 mm!”
Addendum (July 23): The photographed specimen in Plate VIII bears Dr. Wade’s specimen Number 266. Dr. Wade’s text accompanying the plate says it is 1/2 nat. size. Chapman (1925) provides the following description of specimen 266: “A large slab , circ. 32 x 28 cm ...”. As measured in Wade’s Plate VIII the slab has dimensions 13 cm x 11 cm if measured parallel to the edges of the photo, and the dimensions 15 cm x 14 cm if measured diagonally on the specimen. The slab in Wade’s photo is roughly ½ the size of Chapman’s measurements, and supports my suspicion that Sprigg’s measurements for Protoniobia wadea should be in cm not mm.
Addendum (November 5-6, 2021):
A recent paper by Bicknell, Smith, Schroeder, Kimmig (2020) deals with Chapman’s (1925) comment on Wade’s specimen 267, shown in his plate VII. Chapman had commented that the specimen shows the “ remains of crustaceans (?) (phyllocarids).” Bicknell et al. generously note that “there is a small degree of morphological similarity between [a small structure in Wade's photo] and the possible phyllocarid resting trace” but conclude “the specimen’s prior identification as a ‘phyllocarid’ and its similarity to a body fossil is simply a case of pareidolia.”, in part because they assign the rocks to the Mesoproterozoic, well before the accepted age for the origin of Euarthropoda. [Pareidolia is the tendency for perception to impose a meaningful
interpretation on a nebulous stimulus, usually visual, so that one sees
an object, pattern, or meaning where there is none (Wickipedia).] They conclude “the ‘phyllocarid’ likely represents scoring or scouring of the bedding surface.
They also suggest that “serious doubts have been raised regarding biological affinities” of Protoniobia wadea Sprigg, 1949, referencing Dunnet 1965, Cloud 1968, Dow & Gemuts 1969, Grey 1981a, 1981b, Lan & Chen 2012, noting that “Most authors consider P. wadea to represent a chert plate;”.
Bicknell, Russell; Patrick Mark Smith, Natalie Schroeder, Julien Kimmig, 2020
Reconsidering the 'phyllocarid' from the Wade Creek Formation.
Alcheringa An Australasian Journal of Palaeontology 44(4), 3 pages
https://doi.org/10.1080/03115518.2020.1820575
References and Suggested Reading
Aitken,A.R.A. ; S.A. Occhipinti, M.D. Lindsay, A. Joly, H.M. Howard, S.P. Johnson, J.
Hollis, C. Spaggiari, I.M. Tyler, T.C. McCuaig, M.C. M.C. Dentith, 2018
The tectonics and mineral systems of Proterozoic Western Australia: relationships
with supercontinents and global secular change. Geoscience Frontiers ,Volume 9, Issue 2, March 2018, Pages 295-316 doi: 10.1016/j.gsf.2017.05.0
https://d28rz98at9flks.cloudfront.net/81517/Jou1998_v17_n3_p223.pdf
Bland, B. H. 1984.
Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian - Cambrian boundary. Geol. Mag. Vol. 121. No. 6. p. 625 - 633.
Bofinger, Vivian Maxwell (1967)
Geochronology in the East Kimberley Area of Western Australia. Thesis submitted in the Australian National University for the degree of Doctor of Philosophy
Calvera,Clive R., Kathleen Grey, and Martin Laan, 2010
The ‘string of beads’ fossil (Horodyskia) in the mid-Proterozoic of Tasmania.
Precambrian Research 180 (2010) 18–25
Chapman, F., 1925
The Wade Collection of Fossils – Description of Plates in report by Dr. A . Wade on the Petroleum Prospects of the Kimberley District of Western Australia and the Northern Territory, and Preliminary Report by M r. F. Chapman, Palaeontologist, National Museum, Melbourne, on Fossils collected by Dr. A . Wade in the Kimberley District of Western Australia and the Northern Territory. Melbourne: Government Printer. 10 pages
Cloud, Preston E. Jr., 1959
Paleoecology: Retrospect and Prospect, Journal of Paleontology, Vol. 33, No. 5 (Sep., 1959), pp. 926-962
https://pdfs.semanticscholar.org/7062/5e479bd3c7d461bef51193552390d0a6e74e.pdf
Cloud, P.E., 1968.
Pre-Metazoan evolution and the origins of the metazoa. In: Drake, E.T. (Ed.), Evolution and Environment. Yale University Press, New Haven and London, pp. 1–72.
David, Sir T. W. Edgeworth, 1928
Notes on newly discovered fossils in the Adelaide series (Lipalian?), South Australia. Trans. Roy. Soc. S. Australia, vol. 52, pp 191-209, plates 13-18
https://www.biodiversitylibrary.org/item/129838#page/197/mode/1up
Dong, L., Xiao, S., Shen, B., and Zhou, C., Jan 2008
"Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society. 165: 367–378. doi:10.1144/0016-76492007-074.
Dow , D. B. and I. Gemuts, 1969
Geology of the Kimberley Region, Western Australia: The East Kimberley. Bureau of Mineral Resources Geology and Geophysics, Commonwealth of Australia, Bulletin No. 106
https://d28rz98at9flks.cloudfront.net/157/Bull_106.pdf
Dunnet, D. and K.A. Plumb. 1964
Explanatory notes on the Lissadell 1:250,000 geological sheet, SE. 52-2. Western Australia.
https://d28rz98at9flks.cloudfront.net/11327/Rec1964_070.pdf
Dunnet, D., 1965
A new occurrence of proterozoic “jellyfish"from the Kimberley Region, Western Australia.
Bureau of Mineral Resources Geology and Geophysics, Commonwealth of Australia. 10 pages
www.ga.gov.au/webtemp/image_cache/GA11520.pdf
Fedonkin, Mikhail A., 2003
The origin of the Metazoa in the light of the Proterozic fossil record. Paleontological Research 7(Mar 2003):9-41 DOI: 10.2517/prpsj.7.9
https://www.researchgate.net/publication/232679218_The_origin_of_the_Metazoa_in_the_light_of_the_Proterozic_fossil_record/link/54cf3aeb0cf24601c0931518/download
Fedonkin, Mikhail A., Gehling, J.G., Grey K., Narbonne, G, and Vickers-Rich, P. 2007 -
The Rise of Animals: Evolution and Diversification of the Kingdom . Baltimore: The John Hopkins University Press. 331 pages
https://books.google.ca/books?isbn=0801886791
Fortey, Richard, 2010
Trilobite: Eyewitness to Evolution. Knopf Doubleday Publishing Group, 320 pages
https://books.google.ca/books?isbn=0307434672
Glaessner, M. F. , 1959
The oldest fossil faunas of South Australia, Geologische Rundschau, June 1959, Volume 47, Issue 2, pp 522–531
Glaessner, M. F., and Walter, M. R., 1981,
Australian Precambrian Paleobiology, Chapter 6 in D.R. Hunter, editor, Precambrian of the Southern Hemisphere. Developments in Precambrian Geology 2. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company
https://books.google.ca/books?isbn=0080869017
Grey, K., 1981a.
Proterozoic “jellyfish” from the Mount Brooking area, Lissadell Sheet, Kimberley region. Geological Survey of Western Australia Palaeontology Report 29
(1981), 1–4. http://geodocs.dmp.wa.gov.au/document/documentSearch.do
Grey, K., 1981b.
Additional samples of Proterozoic “jellyfish”from the Mount Brooking area, Lissadell Sheet, Kimberley region. Geological Survey of Western Australia. Palaeontology Report 52 (1981), 1–2.
Grey, K., and Blake, D.H., 1999.
Neoproterozoic (Cryogenian) stromatolites from the Wolfe Basin, east Kimberley, Western Australia: correlation with the Centralian Superbasin. Australian Journal of Earth Sciences 46, 329–341.
Grey, K. and Williams, I. R., 1990:
Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup,
Bangemall Basin, Western Australia. Precambrian Research, vol. 46, p. 307-327.
https://doi.org/10.1016/0301-9268(90)90018-L
Grey, Kathleen, Ellis L. Yochelson, Mikhail A. Fedonkin, David McB. Martin, 2010
Horodyskia williamsii new species, a Mesoproterozoic macrofossil from Western Australia
Precambrian Research, Precambrian Research 180 (2010) 1–17 at page 6
Harrington, H. J. And Moore, R. C., 1956
Medusae Incertae Sedis and Unrecognizable Forms, F153-F161, in Moore, R. C., ed., 1956
—Treatise on Invertebrate Palaeontology, Part F Coelenterata . Geological Society of America and Univ. Kansas Press. “Protoniobia.” SPRIGG, 1949 At page F179
https://babel.hathitrust.org/cgi/pt?id=uc1.31822006519136&view=image&seq=5
Hoffman, Hans J., 1992
Proterozoic and Selected Cambrian Megascopic Dubiofossils and Pseudofossils, pages 1035 -1054, in J. William Schopf and Cornelis Klein, editors, The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, 1340 pages @ page 1050
https://books.google.ca/books?isbn=0521366151
Hofmann, H.J. and Mountjoy, Eric W., 2010
Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Salient Mountain, British Columbia, Canada. Canadian Journal of Earth Sciences, 2010, 47(10): 1305-1325, https://doi.org/10.1139/E10-070.
https://www.nrcresearchpress.com/doi/abs/10.1139/E10-070
Horodyski, R.J., 1982.
Problematic bedding-plane markings from the Middle Proterozoic Appekunny Formation, Belt Supergroup, northwestern Montana. Journal of Paleontology 56, 882–889.
Jensen, H. I., 1914
Geological report on the Darwin mining district, McArthur River district, the Barkly tableland;
Bulletin of the Northern Territory, No. 10 . Melbourne : Department of External Affairs
Jensen, H. I.
The Northern Territory. Proceedings of the Royal Geographical Society of Australia, Vols. XXXII-XXXIII, p. 14
Jensen, H. I. And E. Copley Playford, 1913
Paper on the geology of the Northern Territory of Australia, Prepared for the International Geological Congress, Toronto, Canada, XII, Session, 27 pp. Map. Dept. of External Affairs Melbourne. Congrès géologique international, XIIe session, Canada, 1913
Kruse PD and Munson TJ, 2013
Chapter 33: Ord Basin, in Ahmad M and Munson TJ (compilers), Geology and mineral resources of the Northern Territory, Northern Territory Geological Survey Special Publication 5
https://geoscience.nt.gov.au/gemis/ntgsjspui/bitstream/1/81513/1/GNT_Ch33_Ord.pdf
Kruse, P.D., Laurie, J. R., and Webby, B.D., 2004
Cambrian Geology and Palaeontology of the Ord Basin. Memoirs of the Association of Australian Palaeontologists 30, 1-58
Lan, Zhongwu and Chen, ZHong-Qiang, 2012
Possible animal body fossils from the Late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia. Gondwana Research 21(1) January 2012
https://www.researchgate.net/profile/ZHong-Qiang_Chen/publication/257789421_Euxinic_Ocean_during_the_Late_Devonian_Mass_Extinction_Inferred_from_Organic_Compounds/links/5556928208aeaaff3bf601d9/Euxinic-Ocean-during-the-Late-Devonian-Mass-Extinction-Inferred-from-Organic-Compounds.pdf
Lin Dong, Shuhai Xiao, Bing Shen and Chuanming Zhou, 2008
Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, 165, 367-378, 14 January 2008,
https://doi.org/10.1144/0016-76492007-074
Liu, Alexander G., 2011
Reviewing the Ediacaran fossils of Long Mynd, Shropshire. Proceedings of the Shropshire Geological Society, 16, 31-43. https://core.ac.uk/download/pdf/29419212.pdf
Martin, D.McB., 2004
Depositional environment and taphonomy of the 'strings of beads': Mesoproterozoic multicellular fossils in the Bangemall Supergroup, Western Australia. Australian Journal of Earth Sciences. 51 (4): 555–561. doi:10.1111/j.1400-0952.2004.01074.x.
McCall, G. J. H, 2006
The Vendian (Ediacaran) in the geological record: Enigmas in geology's prelude to the Cambrian explosion. Earth-Science Reviews 77 (2006) 1-229
http://old.geology.lnu.edu.ua/phis_geo/fourman/library-Earth/The%20Vendian%20(Ediacaran)%20in%20the%20geological%20record.pdf
Menon, Latha, 2015
Ediacaran discoidal impressions and related structures from Newfoundland, Canada and the Long Mynd, Shropshire,UK: Their nature and biogenicity. Doctoral Thesis, Department of Earth Sciences, University of Oxford, 220 pages
https://pdfs.semanticscholar.org/6bc5/5f45c99fdd676b1f71e9a64783da33477ecf.pdf
Nebel, Oliver, 2014
Rb – Sr Dating, in Encyclopedia of Scientific Dating Methods. Springer Science+Business Media Dordrecht. DOI 10.1007/978-94-007-6326-5_116-1
https://link.springer.com/content/pdf/10.1007%2F978-94-007-6326-5_116-1.pdf
Noakes, L.C., 1956
Upper Proterozoic and Sub-Cambrian Rocks in Australia, in El sistema cambrico, su paleogeografia y el problema de su Base: Symposium: Part 2: Australia, America. 20th International Geological Congress, Mexico, 1956.
https://books.google.com/books/about/El_sistema_c%C3%A1mbrico_Australia_Am%C3%A9rica.html?id=Qw8LAQAAIAAJ
Noakes, L.C., 1957
Upper Proterozoic and Sub-Cambrian Rocks in Australia, 213- 238 in The Cambrian Geology of Australia, Bulletin 49, A. A. Öpik (Editor). Australia. Bureau of Mineral Resources, Geology and Geophysics. Papers presented at the 20th International Geological Congress, Mexico, 1956.
http://www.ga.gov.au/data-pubs/library/legacy-publications/bulletins
Öpik, A. A., 1957a
Cambrian geology of the Northern Territory, pages 25-54 in The Cambrian Geology of Australia, Bulletin 49, A. A. Öpik (editor). Australia. Bureau of Mineral Resources, Geology and Geophysics. Papers presented at the 20th International Geological Congress, Mexico, 1956.
https://books.google.ca/books?id=zLM6AAAAIAAJ
http://www.ga.gov.au/data-pubs/library/legacy-publications/bulletins
Öpik, A. A.. 1957b
Cambrian Palaeogeography of Australia, pages 239 -284, in The Cambrian Geology of Australia, Bulletin 49, A. A. Öpik (editor). Australia. Bureau of Mineral Resources, Geology and Geophysics. Papers presented at the 20th International Geological Congress, Mexico, 1956.
Spotts, J. H. And Weber, O.E., 1964,
Directional Properties of a Miocene Turbidite. California. Pages 199-222 in Brouma, A. H. And A. Brouwer (editors), Turbidites, Volume 3, 1st Edition. Elsevier Science. 263 pages
skip casts and prod casts at page 204 and plate II
https://books.google.ca/books?isbn=0080869130
Sprigg, R.C., 1947
Early Cambrian Jellyfish from the Flinders Range, South Australia. Transactions of the Royal Society of South Australia, 71 (2). 212-224
https://www.biodiversitylibrary.org/part/82733
https://www.biodiversitylibrary.org/page/41347851
Sprigg, R. C., 1950 [Read 8 September 1949]
Early Cambrian 'Jellyfishes' of Ediacara South Australia and Mount John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia, 71-99, plates
https://www.biodiversitylibrary.org/page/41362240#page/96/mode/1up
https://archive.org/details/TransactionsRoy73Roya/page/77
Sprigg, R. C., 1988
On the 1946 discovery of the Precambrian Ediacarian fossil fauna in South Australia. Earth Sciences History Vol. 7, No. 1 (1988), pp. 46-51
https://www.jstor.org/stable/24136869
Strusz, D.L., 1992
Catalogue of Type, Figured and Cited Specimens in the Commonwealth Palaeontological Collection: ARCHAEOCYATHA, PORIFERA, COELENTERATA . Department of Primary Industries and Energy, Australian Geological Survey Organisation, Report 307 https://d28rz98at9flks.cloudfront.net/15216/Rep_307.pdf
- Strusz (1992), in that catalogue of Type specimens, commented:
Rejected from the Coelenterata:
Protoniobia wadea SPRIGG, 1949
CPC 192: HOLOTYPE (impression on bedding plane) - WADE, 1924, pl. IX, CHAPMAN, 1924, p. 9. SPRIGG, 1949, pp. 77-79, text-fig. 2E, pi. IX, fig. 1. HARRINGTON & MOORE, 1956, p. F159, Fig. 131.
Locality: Mount John, Osmond Range, Kimberley district, Western Australia.
Horizon:"Lower Cambrian Flags".
Age: Early Cambrian. ("Lower Cambrian or even Algonkian" - Chapman, 1924).
Remarks: Originally thought by Chapman to be a "... coiled (?) gephyrean or unsegmented worm", and then by Sprigg to be a hydrozoan. Harrington & Moore rejected both interpretations - “Here interpreted as a concretion, inorganic."
Sweet, I. P. , 1977
The Precambrian Geology of the Victoria River Region, Northern Territory. Bulletin 168, Australia. Bureau of Mineral Resources, Geology and Geophysics
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/80
page 33: Age and Correlations: The first attempt to relate East Kimberley and Victoria River region rocks was made by Wade (1924) who, on the basis of supposed trace fossils, called rocks in both areas the Mount John series.
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/80
Talbot, H. W. B. and Simpson, Edward, 1926
A geological reconnaissance of part of the Ashburton drainage basin, with notes on the country southwards to Meekatharra / by H.W.B. Talbot ; with an appendix on the minerals of the Ashburton and Gascoyne Valleys by Edward S. Simpson. Bulletin (Geological Survey of Western Australia) ; no. 85. Perth, Western Australia : Government Printer, 113 pages
Thom, J.H., 1975,
Remaining Precambrian area, Kimberley region, in Geology of Western Australia, Geological Survey of Western Australia. Memoir, 2, p160-193
http://dmpbookshop.eruditetechnologies.com.au/product/the-geology-of-western-australia.do
Tyler, Ian M., Roger M. Hocking and Peter W. Haines, 2012
Geological evolution of the Kimberley region of Western Australia. Episodes Vol. 35, no. 1, 298-306 https://www.researchgate.net/publication/236782362_Geological_evolution_of_the_Kimberley_region_of_Western_Australia
Tyler I. M., Thorne A. M., Hoatson D. M. & Blake D. H. 1997.
Turkey Creek, Western Australia, 1:100 000 geological map (sheet 4563).
Geological Survey of Western Australia, Perth.
http://geodocs.dmp.wa.gov.au/viewer/viewerComponentAction.do?documentId=571018&viewMarkId=0&ct=true&at=none&btv=true&atv=false&vmtv=false&ac=ff0000&cabinetId=1101&pg=0&scl=18&bds=0|0|12743|9102
Tyler, I.M., Thorne, A.M., Sheppard, S., 1998
Dixon Range, WA Sheet SE 52-6 (2nd edition), 1:250 000 Geological Series Map
Geological Survey of Western Australia, Perth.
http://dmpbookshop.eruditetechnologies.com.au/product/dixon-range-wa-sheet-se-52-6.do
Traves, D. M., 1957
Upper Proterozoic and Cambrian Geology in North-western Australia, pages 75 -90 in The Cambrian Geology of Australia, Bulletin 49, A. A. Öpik (Editor). Australia. Bureau of Mineral Resources, Geology and Geophysics. Papers presented at the 20th International Geological Congress, Mexico, 1956.
Turner, Susan and Rich, Patricia Vickers, 2007
Sprigg, Glaessner and Wade and the discovery and international recognition of the Ediacaran fauna. Geological Society London Special Publications 286(1) January 2007
DOI: 10.1144/SP286.37
https://www.researchgate.net/publication/228491752_Sprigg_Glaessner_and_Wade_and_the_discovery_and_international_recognition_of_the_Ediacaran_fauna/link/00b7d51754f0f9eb16000000/download
Udden, J.A., 1918
Fossil Ice Crystals. University of Texas Bulletin No. 1821
https://archive.org/details/cu31924004981936/page/n2
Unknown, 1920
Prehistoric Ice Crystals Leave Fossil Imprints. Popular Mechanics. Volume 34, Page 532
https://books.google.ca/books?id=8YPVAAAAMAAJ
Vallance, T. G., 1990
Wade, Arthur (1878–1951). Australian Dictionary of Biography, Volume 12, (MUP), 199
http://adb.anu.edu.au/biography/wade-arthur-8936
accessed online July 14, 2019
Yochelson, E. L. and Fedonkin, M. A., 2000
A new tissue-grade organism 1. 5 billion years old from Montana. Proceedings of the Biological Society of Washington, vol. 113, p. 843-847.
Wade, Arthur, 1924,
Petroleum prospects, Kimberley district of Western Australia and Northern Territory. Commonwealth of Australia, Report to Parliament, no. 142. Melbourne: Government Printer.
https://books.google.ca/books?id=n5_nAAAAMAAJ
Wade, Mary (1969)
Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology 12, 351-365
https://www.biodiversitylibrary.org/page/49808138#page/7/mode/1up
Wade, Mary (1972)
Hydrozoa and Scyphozoa and other Medusoids from the Precambrian Ediacaran fauna south Australia. Palaeontology 15, 197-225
https://www.biodiversitylibrary.org/page/49933340#page/295/mode/1up
Williams, S. J., 1967
250 000 geological series Map: explanatory notes - Page 6
Geological Survey of New South Wales. Australia. Bureau of Mineral Resources, Geology and Geophysics, https://books.google.ca/books?id=zHpjAAAAIAAJ
Wilson, Alice E, 1957
Life in the Proterozoic, a Chapter in The Proterozoic in Canada, James E. Gill, editor, University of Toronto Press, 204 pages at pages 18-27
https://www.jstor.org/stable/10.3138/j.ctt1vgw7jv
https://books.google.ca/books?isbn=148759754