Saturday, 4 March 2017

Ebenezer Emmons’, Sir William E. Logan’s, Professor Amadeus W. Grabau’s and Professor Greggs’ Comments on Potsdam Sandstone

I find it interesting,  when considering how the theory of the origin of  the Potsdam Group sandstones (of Ontario, Quebec and New York State)  has evolved over time, to note that numerous early writers made insightful comments, but were ignored or had their contributions overlooked.  In this posting I will mention a few of the geologists who deserve more credit.    While the title to this posting singles out Emmons, Logan, Grabau and Greggs, numerous others made insightful comments.

Ebenezer Emmons named the Potsdam sandstone.   His earliest downloadable report dates from 1842.  In this report he mentions that the Potsdam sandstone is found with conglomerate and that there a number of varieties of sandstone.  He identifies two principal varieties: 1st a sandstone variety that he subdivides into two further varieties found at quarries  (a)  at Potsdam (St. Lawrence County), and (b) at Bangor (Franklin County) and “Moore” (later spelt Mooers) ; 2nd a sandstone found at Keeseville, Whitehall and Kent, which he later says he has sometimes given “a compound name– the Potsdam and Keeseville sandstone”.  He also mentions other varieties of sandstone.    Interestingly, his sandstone from the Potsdam quarry we would now call the Hannawa  Falls Formation; his sandstone from Mooers area is likely the one we would call the Ausable Formation sandstone (for rocks in New York State; or the Covey Hill Formation, for rocks in Ontario and Quebec), and his sandstone from Keeseville we could call the Keeseville Formation (or Nepean formation, for rocks in Ontario; Cairnside Formation, in Quebec).

 In addition, Emmons comments that “Though the rock is generally even-bedded, I have noticed several places where it has been subject to violent forces, so as to greatly derange the strata”, and included drawings of folded and faulted outcrops.   He also comments on the differences in beds, singling out  materials “that appear to have been borne along by a moderate current, which has been given a diversity of stratification resembling inclined beds”, and includes a drawing of such strata, a drawing that looks like fluvial facies.

Emmons (1846) summarizes the Potsdam sandstone, summarizes  the varieties of sandstone, and notes that “In many places it is a coarse conglomerate”.

Logan makes at least the following important points:

- the Potsdam sandstone that is found in New York state extends into the Provinces of Ontario and Quebec (Logan 1844; Logan 1863)

- the Potsdam sandstones at Beauharnois which produced Protichnites trackways contain both wave ripple marks and wind ripples– they are littoral sandstones (Logan, 1860; Logan, 1861, Logan, 1863 )

- The Potsdam sandstone is better referred to as part of the Potsdam Group as the “sandstone is a member of a series of strata” and includes conglomerate  (Logan 1863)

Intriguingly, both Logan’s identification of wind ripples and his comment that the Potsdam sandstones at Beauharnois are littoral sandstones were referred to in papers published for over forty years,  but then disappeared from the literature.

Professor Amadeus W. Grabau makes the following points:

- where the Potsdam is “a transgressive overlapping series of strata deposited by a transgressing sea, the basal sand member would naturally rise in the series in the direction of transgression and overlap, and that hence a basal sand is not everywhere of the same age” (Grabau, 1909; also Grabau, 1913)

- the earlier parts of the Potsdam are of continental origin, commenting: “in many, if not in most, regions the Paleozoic series begins with a formation of continental origin, the upper portion of which was reworked by the transgressing sea”; “the Potsdam sandstone, ... in many sections, still shows characters pointing to torrential or eolian origin of a considerable portion of the rock”; and “In many cases this northern “Potsdam” sandstone shows evidence of continental origin in pre-marine time by the occurrence of well-marked torrential cross-bedding in parts which apparently have not been reworked.”

- the Potsdam sandstone includes both quartz sandstone and arkosic sandstone (Grabau, 1920).

Professor Greggs, in combination with co-authors from the Geology Department at Queen’s University at Kingston, differentiated between typical Nepean and typical Potsdam (Hannawa Falls) sandstones, finding that both occurred in Ontario and both occurred in New York State, noting that “These sandstone units  appear to bear consistent stratigraphic relationships to one another” [Greggs and Bond, 1972].  Further, “Periods of erosion punctuated the development of the Potsdam sandstones (Cushing, 1910; Chadwick, 1919; Clarke, 1966), and at some stratigraphic horizon not yet determined by detailed field studies, the environment of deposition of the Potsdam appears to have changed from continental, wind-blown sandstones, possibly reworked by coastal waters, to a shallow marine depositional environment.” [Greggs and Gorman, 1976]

Interestingly, Professor Greggs’ distinction between the shallow marine Nepean sandstone and typical continental, wind- blown Potsdam (Hannawa Falls) sandstone in part reflects the distinction drawn by Ebenezer Emmons (1842) who distinguished between the variety at Keeseville and the other at Potsdam, St. Lawrence County.  

(Numerous others who studied and reported on the rocks of New York State, including Professor Cushing, distinguished between the varieties of Potsdam sandstone.   There are just too many to summarize.)

Christopher Brett
Perth, Ontario

References

Emmons, Ebenezer, 1842
Survey of the Second Geological District, In Geology of New York, Part II; W. & A. White & J. Visscher, Albany, New York

Emmons, Ebenezer, 1846
Agriculture of New York;   C. Van Benthuysen & Co., Albany, New York

Grabau,  Amadeus W., 1909
Physical and Faunal Evolution of North America during Ordovicic, Siluric, and Early Devonic Time, The Journal of Geology, Volume 17, 209-252

Grabau, Amadeus W., 1913
Principles of Stratigraphy; A.G. Seiler and Company, New York

Grabau, Amadeus W., 1920
A Comprehensive Geology; Part 1, D. C. Heath & Co., New York           

Greggs, R. G.  and Bond, 1972
A principal reference section proposed for the Nepean  Formation of probable  Tremadocian age near Ottawa, Ontario. Canadian Journal of Earth Sciences, 9, pp. 933-941.

Greggs, R.G.  and Gorman, W.A.  1976
Geology of the Thousand Islands,  by Parks Canada
http://www.oliverkilian.com/ecology/thousand-islands/island-insights/geology/rocks.html

 Logan, W. E.,  1844
Geological Survey of Canada, Report of Progress For the Year 1843

Logan, W. E., 1860
On the Tracks of an Animal lately found in the Potsdam Formation ,  read before the Natural History Society of Montreal in June, 1860, volume V of The Canadian Naturalist and Geologist, article XXXIX, pages 279-285

Logan, W. E., 1861
Considerations relating to the Quebec Group, and the Upper Copper-bearing Rocks of Lake Superior;  read before the Natural History Society of Montreal in May, 1861, volume VI of The Canadian Naturalist and Geologist, page 199-207

Logan, W. E., 1863
Geology of Canada, Geological Survey of Canada, Report of Progress from its commencement to 1863,

Thursday, 2 March 2017

Sandstone Filled Cracks Extending into Marble at an Outcrop Near The Cat’s Meow

In my last blog posting I mentioned that Dr. Easton (2015) had reported “A previously unknown exposure of Potsdam group sandstone and conglomerate that he “identified on the north side of Highway 7 approximately 5 km west of Wemyss (385510E 4967646N)” and that the outcrop is worth a visit.    The outcrop is just east of signs on Highway 7 for The Cat's Meow, an upscale inn for cats, at  20619 Highway 7.

Dr. Easton describes the outcrop as follows:
“A previously unknown exposure of Covey Hill Formation strata, or possibly the Abbey Dawn Formation of Sanford and Arnott (2010), was identified on the north side of Highway 7 approximately 5 km west of Wemyss (385510E 4967646N). Here, a channel, at least 3 m deep and up to 20 m wide, was cut down into weathered calcite marble. The deeper (>3 m) west side of the channel is filled with red-weathering pebbly conglomerate containing subangular to subrounded rock fragments and quartz pebbles, which grade upward into thin-bedded reddish coarse sandstone. The shallower (~2 m) east side of the channel consists of red mudstone and siltstone beds (up to 1 cm thick) that immediately overlie the marble basement, and which are overlain, in turn, by thin-bedded reddish coarse sandstone.”

I visited the outcrop last year.   Fifty percent  of the outcrop is marble.  I noted that Dr. Easton had described  the sandstone and conglomerate at the center and east end of the outcrop.   A small amount of sandstone/mudstone also occurs at the west end of the outcrop in cracks in the marble.  There are vugs in the marble filled with calcite crystals.   There is a small hematite gossan at the west end of the outcrop and a larger example in the center of the outcrop.   At least two faults cut the outcrop.  I would not have identified the sandstone/conglomerate as the Covey Hill Formation strata  or the Abbey Dawn Formation.  The sandstone is more likely the Hannawa Falls Member of Sanford and Arnott (2010) /the Hannawa Falls Formation of Lowe (2016).    

The most interesting feature of the outcrop is the beds of siltstone/mudstone at the base of the sandstone, which drape over the marble and underlie a thin friable layer comprised of pea sized pebbles of marble.   

Attached are three of the photos that I took.  The first shows sandstone fissures in the marble at the west end of the outcrop.   The second photo shows siltstone/mudstone layers draped over the marble and underlying a friable layer; overlain by massive  sandstone beds.  The base of blue ruler is along the contact with the Grenville marble.  The third photo shows the hematite gossan and possibly a fault.














There have been numerous reports in the literature of tongues of sandstone extending into the underlying marble.  Where the sandstone is described it is invariably a dark red sandstone, possibly what we would now identify as the eolian Hannawa Falls Formation of the Potsdam Group.  Below are a few of the less often cited reports:

Helmstaedt,  Gorman & McBride (1987) in a field trip guide for the Kingston, Ontario area mention a “paleokarst cave” near the entrance to the Portland Conservation Area, on the east side of Highway 38, about 2 km south of Verona, noting that a “Cut on east side of road shows a paleokarst cave in Precambrian marble filled with sandstone breccia of Nepean Formation (Fig. 11). Sandstones with local cross-bedding extend as horizontal ‘tongues' into the marble.” [Note: this guide appears to have been written when all of the sandstones of the Potsdam Group were referred to in Ontario as Nepean Formation.]
   
Smyth (1893, at page 104) reports that “North of Gouverneur [New York]  the [crystalline] limestone and sandstone are in direct contact... From the irregular line of contact it is clear that the material of the sandstone was deposited upon a  [crystalline]  limestone surface that had been subject to erosion.  An interesting confirmation of this conclusion is seen in the presence of narrow, irregular cracks extending several feet into the  [crystalline] limestone and filled with sandstone.”
   
Winchell (1893, pages 107-108) reports on a trip to look at the  Potsdam sandstone in Upper New York State.  He also reports on hematite ore bodies in marble noting that for many occurrences the ore lies “at the base of the Potsdam.”    For outcrops near Richland, New York, he noted that “The sandstone grades into soft hematite, which appears like a good ore.  The upper surface of the marble is fissured in places, and the hematitic material of the sandstone extends down into these fissures (fig. 7).”

Cushing et al (1910) reported on the Geology of the Thousand Islands Region, New York State.  They reported a “dark red, very thoroughly indurated and vitreous sandstone that differs from the general run of sandstone in the district” and that “all the sand-filled cracks seen in the Grenville [crystalline] limestone were filled with this type of sandstone...”.

Cushing and Newland (1923) report on sand filled cracks in marble mentioning that outcrops “may be seen in several places in the Gouverneur quadrangle” and that “on the bared [crystalline] limestone surfaces the red sandstone stands out in relief”.

Professor Bruce Selleck (2005) of Colgate University in a field trip guide mentions “Sand from the Potsdam is also found within open fractures and filling hydrothermal karst tunnels and pipes [in marble].  These fillings are often deeply colored red or maroon by abundant hematite cement, and the sand is usually tightly cemented by quartz and carbonate minerals, but rounded sand grains can usually be seen with a hand lens.  Some of the conglomerates within the Potsdam contain chert clasts that are the result of silicification of marble clasts.  Pebbles of jasper and clasts of laminated sandstone that had been silica-cemented, reworked and re-deposited are also present in the conglomerate and pebbly sandstone beds. 

 Professor Selleck commented on the association of hematite and the Potsdam as follows:“The hematite deposits also share the common presence of nearby or directly overlying inliers of Potsdam Sandstone (Chamberlain 1984). The paragenesis of the hematite deposits is generally interpreted as multi-stage with pre-Potsdam surface weathering of Proterozoic iron sulfide leading to accumulation of locally thick gossans of limonite/hematite prior to Potsdam Sandstone deposition (Chamberlain 1984).  Post-Potsdam reconstitution of the iron oxides involved hydrothermal fluids that dissolved and re-deposited hematite within Potsdam Sandstone as thick botryoidal masses, specular crystalline aggregates, veins and disseminated cements in sandstone and highly altered Proterozoic basement gneiss.”    There are too many other reports of hematite at the Potsdam/Grenville marble interface to mention.
                   
Christopher Brett
Perth, Ontario



---------------------------------------------------------------
References
           
Cushing, H.P., Fairchild, H.L., Ruedemann, R. And Smyth, C.H. Jr., 1910
Geology of the Thousand Islands Region, New York State Museum Bulletin  No. 485 at pages 62-63

Cushing, H.P., and Newland, D. H., 1925
Geology of the Gouverneur Quadrangle, New York State Museum Bulletin  No. 259 at page 49 and Plate 11

R. M. Easton, 2015
Project Unit 15-014. Precambrian and Paleozoic Geology of the Perth Area, Grenville Province, in Summary of Field Work and Other Activities, 2015. Ontario Geological Survey, OFR 6313
at pages 18-1 to 18- 13
http://www.mndm.gov.on.ca/en/news/mines-and-minerals/summary-field-work-and-other-activities-2015  

Helmstaedt,  H.H.,  Gorman W.A. & McBride, S.L. 1987
Field Tripping: Geology of the Kingston Area,
By the  Department of Geological Sciences, Queen's University, Kingston,  
www.whaton.uwaterloo.ca/waton/s906.html
   
Lowe, D.G.,  2016  
Sedimentology, Stratigraphic Evolution and Provenance of the Cambrian – Lower Ordovician Potsdam Group in the Ottawa Embayment and Quebec Basin;
Doctoral Thesis, University of Ottawa,
http://www.ruor.uottawa.ca/handle/10393/35303

Sanford, B.V.  and Arnott, R.W.C.,  2010
Stratigraphic and structural framework of the Potsdam Group in eastern Ontario, western Quebec, and northern New York State.  Geological Survey of Canada, Bulletin 597, 85 pages
publications.gc.ca/collections/collection_2010 /nrcan/M42-597

Selleck, B., 2005
Exploring the root zone of an ancient fault-driven hydrothermal system in the Adirondack Lowlands, New York; NYSGA Field Trip Guidebook, 77th Annual Meeting, 12-31

Smyth, C. H., Jr., 1893
Geological Reconnoissance in the Vicinity of Gouverneur, N. Y.; Transactions of the New York Academy of Sciences, Vol. XII, pages 97-108  at 104

Winchell, N. H., 1893
The Potsdam sandstone at Potsdam, New York; in Field Observations of N. H. Winchell in 1892;
The Geological and Natural History Survey of Minnesota, Twenty-first Annual Report for the year 1892, pages 99- 111